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under perturbation around its solution: Lie-Biicklund 
symmetry approach 
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Department of Physics, Bharathidasan University, Tiruchirapalli 620 023, India 

Received 21 February 1983, in final form 11 July 1983 

Abstract. It is shown that when the Korteweg-de Vries equation is perturbed about a 
particular solution the resulting evolution equations to all order of perturbations admit 
infinitely many Lie-Backlund symmetries. The corresponding commuting constants of 
motion are derived and thereby complete integrability can be established. 

1. Introduction 

In recent years there has been progress in understanding the geometrical and group 
theoretical properties of many soliton equations (Ablowitz and Segur 198 1, Anderson 
and Ibragimov 1979, Bullough and Caudrey 1980, Fuchssteiner and Fokas 1981, 
Lakshmanan 1978, 1979). It is noted that these exactly solvable systems possess many 
interesting features in common such as Backlund transformations, an infinite number 
of constants of motion which are in involution, N-soliton solutions (Ablowitz and 
Segur 1981, Anderson and Ibragimov 1979, Bullough and Caudrey 1980), an infinite 
number of Lie-Backlund (LB) symmetries (Fuchssteiner and Fokas 198 l), etc. 
Recently it has been observed by Case and Roos (1981) that when a completely 
integrable Hamiltonian system in (1 + 1) dimensions is perturbed about a particular 
solution the resulting equations are also completely integrable. As the existence of 
an infinite number of constants of motion of the soliton equations is intimately 
connected with the existence of an infinite number of LB symmetries (Fokas 1979, 
1980, Kumei 1977, Strampp 19821, it is natural to search for the same for the perturbed 
Hamiltonian equations as well. In this paper, we consider the Korteweg-de Vries 
(KdV) equation as a specific example and show the existence of an infinite number of 
LB symmetries for each order of the perturbation equation. It is also pointed out that 
the corresponding constants of motion which are in involution can be obtained 
straightaway using the relation between the LB symmetries and conserved covariants 
so that the complete integrability is established. 

2. LB symmetries and K d v  equation under perturbation around its solution 

We consider the K d v  equation in the form 

U, = -d,(U2+2U,,). (1) 
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In order to study the properties of the perturbed system of (l), as a first step, we 
perturb the particular solution U (O) of (1) in such a way that 

where E E R  is a small real parameter. The given solution U('' in (2) is, for example, 
the soliton solution of (1). Substituting ( 2 )  into (1) and collecting the coefficients of 
E ' ,  setting each of them individually equal to zero, the resulting equations are of the 
form 

We note at this stage that further analysis of (3) is facilitated? by assigning a weight 
n to U("' and its derivatives and requiring that each term in the equations derived 
from it must have equal weight. 

Considering now the following vector-valued functions: 

(4a 1 
k = 0 , 1 , 2  , . . . ,  a, (4b)  

(01 ( 1 '  , U U = (U , . . . , U'"'), 
( 0 )  (1) 1 " )  

Uk =(Uk 9 uk 9 9 * * Y 1 9  

We define the ring of functions G ' ( u ) ,  and a corresponding vector-valued function 
G ( u ) ,  in such a way that 

( 4 4  G ( u )  = (G"'(u), G"'(u) ,  . . . , G'"'(u)) 

{G"'(u)"('' = G"'(u, U I ,  u2, . . .I}. 
where 

(4e 1 
These functions are assumed to have the usual smoothness properties, defined over 
appropriate space, and to vanish at *CO. Then (3) is a particular case of the vector- 
valued equation 

f k u ,  + K ( u )  = 0 ,  ( 5 a )  
where 

n = (a'"', n'", . . * , a'"'), K ( u )  = (K'''(u),  K '" (u) ,  . . . , K'" ' (u ) ) .  (5b, c )  

It is easy to see that the soliton solution U(') satisfies the K d v  equation 

For our further discussions we also need the total derivative operators defined as 

+ We thank the referee for pointing this out to us 
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Then the LB operator is defined as 

where the vector-valued generalised LB symmetries 

(9) 

We note that the symmetry 7 7 ' ' )  is associated with the corresponding U") of (3). It is 
clear then that the LB operator X ( q )  in (8) leaves the system (3) invariant (Strampp 
1982) iff 

(1) 
77(u) = ( d 0 ' ( U ) ,  77 (U), . . . 9 d n i ( u ) ) .  

x(v)n(i'l*(g = o  = 0, i = O , l ,  . . . ,  n ,  (10) 

where = stands for the restriction to solution of (3). From (10) and (3), using (7) and 
(8) the explicit form of the invariant equation is given by 

i = O ,  l , . .  . , n .  (11) 

To prove the existence of an infinite number of commuting vector-valued symmetries 
ql, I =  1 , 2 , .  , . , CO, it is generally enough to find one generalised vector-valued LB 

symmetry apart from the already known space and time translation LB symmetries. 
This is because with the above symmetries it is often possible to construct the so-called 
strong symmetry and hereditary symmetry, which recursively generates new sym- 
metries from the known ones (Fuchssteiner and Fokas 1981, Fokas 1979, 1980). 

We now introduce the following operator-valued quantities. Let the Frechet 
derivative of the vector-valued function K ( u )  (see ( 5 ) )  be defined by 

1 ~ u ~ - J ) v ( J ) + u ( ~ l ~ 7 7 i i - J l )  = 0, 
O S J S i  

K'(u)[ t ' ]=-(u  + & U )  . aK a& I L "  
It is clear that the operator K'(u) is an ( n  + 1) X (n  + 1) matrix given by 

i = O , l ,  . . . ,  n, 
j = o ,  1 , .  . . , n ,  K'(u 1 = ( K y  ), 

where 

We further define the Frechet derivative of an ( n  + 1) x (n + 1) matrix operator-valued 
function @(U) by 

a@ 
@ ' ( u ) [ u ] w  =-(U + E U ) W  

a& I L 0  
where the operator 

@'(U 1 = (0; (U 11, i , j = O ,  1 , . . . ,  n ,  (16) 
and 0; is the (i , j) th component of @. In the above definitions the vector-valued 
functions v and IV are arbitrary functions of U, uk, k = 1, 2 , .  . . , 03. Let the matrix 
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operator-valued function @ be a map of the vector-valued symmetries T in such a 
way that 

Then the operator @ is a strong symmetry iff it satisfies the condition 

771+1= @Tf, l = l , 2 , 3  , . . .  ) 03. (17) 

@'[I@ - [ K ' ,  @]U = 0. (18) 

By the definitions (17) and (18) we have an infinite sequence of vector-valued LB 
symmetries. Further, the commutativity of these symmetries is guaranteed by the 
concept of hereditary symmetry. If the operator CP in (17) satisfies 

@,'(u'[w] - w'[v]) + @{(@w )'[U]}- U'[@W] +[@(U), @(w)]-@[(@u)'[w] - W'[@U I] = 0, 
(19) 

where U and w are functions of U, u l , ,  . . , then we say that @ is hereditary. By the 
hereditary of CP we will also have the hierarchy of exactly solvable matrix-valued 
equations (Fokas 1980): 

ut +@"U, = 0, m = 0 , 1 , 2  , . . . ,  00. (20) 
Since the x-translation symmetry is the first among the matrix-valued local LB sym- 
metries ( T I ) ,  and then (20) with the aid of (17) can also be written as 

ut + T m f l =  0, m = 0 , 1 , 2  , . . . ,  a. (21) 
Having obtained infinitely many commuting LB symmetries of (3, it is of importance 

to investigate the associated conserved quantities. Let the matrix functional 
OD 

I != I-, p l ( x ,  U"', u ' l ' ,  U:", . . .) dx 

= (P, I:", . . . , I ! " ' ) ,  l = l , 2 , 3  ) . . . )  CO, 

be the associated constants of motion for the system of equations ( 5 ) .  Then the 
corresponding vector-valued conserved covariants yl=(yjo ' ,  yil' ,  . . . ,-yi")) can be writ- 
ten as 

y1 = grad I, e y j "  = SI!"/Su'", l = l , 2 , 3  ) . . . )  00, i = 0 , 1 , 2  , . . . ,  n, (23a) 

such that s = i - j ,  0 s s, j S i. More explicitly we have 

(y iO),  y p ,  , . . , # )  = ( S p / S U ( l ) ,  S I y / 8 U ( r - 1 )  , . . . , S I ~ " / S U ' ~ ' )  (23b) 
or, stated simply, for the nth perturbed equation, the component form of the conserved 
covariant y corresponding to U") is given by S I ( " ' / S U ( ~ ) =  y("- ' ) .  

Now the equations of motion ( 5 )  with reference to (3), that is, the K d v  equation 
(1) perturbed around its solution, can always be rewritten in the Hamiltonian form 
(Case and Roos 1981) 

(24) ut +J6%/6U @(U?') = -J@2Pi/SuiJ1)= -K("), 

s = i - j ,  Ocs, j s i ,  i = O ,  1 , 2 , .  . . , n ,  

where the matrix-valued Hamiltonian functional %(U) = (%"''(U), %'(''(U), . , . , 26""' 
(U)) is obtained straightaway by perturbing the KdV Hamiltonian 
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of ( 1 )  and J is an (i + 1) x (i + 1 )  (i = 0, 1 , 2 ,  . . , , n )  skew-symmetric matrix operator 
with the diagonal elements equal to the total differential operator D. Equation ( 2 4 )  
may also be written more explicitly in component form or matrix form as 

Further, from the fact that equations ( 5 )  or (24) admit strong and hereditary 
symmetry and so the infinite hierarchy of evolution equations ( 2 0 ) ,  any of the constants 
of motion of ( 5 )  or (24 ,  an be used as a Hamiltonian. Accordingly, by using the 
definitions ( 2 3 )  and (24), we can rewrite the hierarchy ( 2 0 )  in the Hamiltonian form 

ut+JGIm+1/Su = ~ r + J 3 / ~ + 1 = 0 ,  m = 0 , 1 , 2  , . . . ,  m. ( 2 6 )  

J Y m + l =  v m + 1 ,  m = 0 , 1 , 2  , . . . ,  a, ( 2 7 )  

Comparing ( 2 1 )  and ( 2 6 )  we obtain the relation 

relating the vector-valued conserved covariants and the vector-valued LB symmetries. 
Finally, we obtain a recursive relation for the conserved covariants through the 

adjoint of the strong symmetry. By definition, the matrix-valued adjoint operator @+ 
satisfies the condition 

( 2 8 )  
for the given vector-valued covariants f and symmetries g with respect to the product 

(f, @g) = @+f, g >  

cc 

(f, g )  = [ fg dx = [* ( f f'r'g(""') dx. 
;L -a, r = O  

Since I, is a conserved quantity of ( 5 ) ,  it is also a conserved quantity of the whole 
hierarchy ( 2 0 ) ,  so that 

dIj/dt = I ;  (U,) = O @ ( n ,  K )  = 0, 

as well as 

(Yl, QmK) = 0, m = 0 , 1 , 2  , . . . ,  a. 
From ( 2 9 )  we also have the relation ( y [ ,  @'"a = ((@+)'"yI, K ) ,  and therefore 

Y l + m  = ( @ + ) m ~ l ,  m = 0 , 1 , 2  , . . . ,  a, (30) 
are also the conserved covariants of ( 5 ) .  Finally from the relations (27) and ( 3 0 )  we 
readily establish that 

@ T I = @ J Y I  = ~ J + I  = JyI+1= J@+yj  
so that 

which connects the strong symmetry and its adjoint. 

J @ +  = @J 

3. First-order perturbation 

We first consider the first-order perturbation equation ( i  = 1 )  in ( 3 )  in the form 

( 3 3 )  + 2 U : 1 ) + 2 U ( 0 ) U : 1 ) + 2 U ( 1 ) U : 0 )  =o ,  
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find its infinite number of commuting LB symmetries and obtain the corresponding 
constants of motion, and then show possible generalisation of these results to any 
order of perturbations. 

In order to find the LB symmetries of (33) we have to consider this in conjunction 
with the LB symmetries of the corresponding unperturbed form (6) ( i  = 0 in (3)). The 
various LB symmetries of (6) are obtained by solving its LB invariant equation (i = 0 
in (1 1)) 

(34) 

recursively. For example, we have the following first three LB symmetries of (6) 
(Fokas 1980): 

(352, b )  

(35c) 

Using these three LB symmetries it is possible to construct the strong and hereditary 
symmetry 0"' of (6) which satisfies the conditions (18) and (19). This operator 0") 
is given by (Fokas 1980) 

(36a 1 

D , ~ ( O ) +  2 ~ ~ ~ 1 ~ ) + 2 ~ ( ~ i ~ ~ ( ~ )  + 2u p7 ( 0 )  = 0 

ioi I O )  T&n'=2u:o'+2u ( 0 )  U 1  ( 0 )  , 

( 0 )  - 4u:0' +a 10) ( 0 )  +yu'o' (0' 
773 - 3u1 U 2  U 3  ++)(U ) U 1  . 
71 = U 1  9 

10) 2 ( 0 )  

0 = @IO) = 2 0 2  + ( 0 )  +& yD-1, 

where 

generates an infinite number of commuting LB symmetries (7 !n'}, 1 = 1, 2, , , , ,a for (6). 
The action of the LB operator (8) on the first-order perturbation equation (33) 

gives the corresponding invariant equation ( i  = 1 in (1 1)) 
Dr7 I 11 + 2D377  III + 2 u  (oID7 ( 1 1  + 2u I ilD7 (01 + 2u I 11 In) + 2rr ( 0 1  ( 1 1  - 

1 7 7  1 77 -0.  (37) 

In order to find the exact form of the symmetries qiii, we assume that 77"' does not 
contain x and t explicitly. The first two symmetries corresponding to space and time 
translations of (33) are written readily as 

d )  = U1 I (38) 

(39) 

To find a more general symmetry we proceed as follows (Fokas 1980, Tamizhmani 

7-/y =2U:"+2u IO1 U 1  111 +2u:0'u"' .  

and Lakshmanan 1982). Calling 7;" = 5, we search for a 
( 0 1  lo) I O ]  (n i  I O !  ( I )  1 1 1  111 ~ I I  i i ]  ' 1 1  5 = 5 [ u ' " , U i  , u2 , u3 , u4 , u s  , U , u i  , u 2  , u3 , u4 I u s  I, (40) 

with unit weight. Substituting (40) ir. (37) and eliminating U::' and U : : ' ,  i = 
0, 1, 2,-3,4, 5, by using (6) and (33), we collect the coefficients of K ; " ,  U ? ' ,  U:", U ? )  
(noting that the coefficients of K : '  and U?' are cancelled). Then equating each of 
these coefficients to zero, we obtain 

D € u ~  = O .  (41) D5ui;i = 0, 

Solving these equations we have 

(42) 111 (11 (0 '  10) 10) 11) 1 1 1  ( = a l u s  +u2u4 + A ( u " ' , u l  , u 2  , u j  , U  , u 2  , U ; " )  
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where a 1  and u2 are arbitrary integration constants. Substituting (42) in the remaining 
terms of the expanded version of (37) and equating the coefficients of U:’’ and u y ’  
to zero, we have 

Solving (43a) and (43b), we get a2 = 0 and 

A = 2alu u3  - 3 u  u 3  +,ulu u3 +u~u :”  +B(u“’, U:”, U:’’, U;”, U:”) (44) 

where u 3  is again an integration constant. 

zero and solving the determining equations we find that a = 4, a3 = 0 and 

! i )  to) 4 111 10) 5 ! O !  ( 1 )  

Repeating the same procedure and equating the coefficients of U:’) and uk“ to 

(45) B = 4 0  (11 ( 0 )  40 I O )  (11 
3 u 1  U 2  +3/,41 U 2  +a~u~l ’+c(u(o’ ,u~oi ,u l l i ,u~l i )  

where a4 is an integration constant. Proceeding in this way, we find the final form of 
the LB symmetry as 

20 10) 11) 40 10) 11) 40 ( 0 )  11) 20 ( 0 )  I O )  ili+N 10) 2 11) 5=4U(5”+~U!3°’U‘”+~U 143 + T U 2  U1 + T U 1  U 2  + T U  U 1  U 3 ( U  ) 2.41 

(46) 
with the constant a4 = 0. This symmetry is a solution of (37) (note that in (37), 77“) 
is already known). 

From the knowledge of the above first three LB symmetries of zeroth- and first-order 
equations, that is, q:’), vio), vio’ and v:’’, q:’), vL1), we can find an operator 

3 (47) 
0 

2 0 2  + 
( 0 )  + \“’D -1 

= 

which satisfies the strong symmetry condition (18): 

In fact, we verify that 
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so that (48) holds good, This strong symmetry operator @(I)  therefore generates an 
infinite number of LB symmetries of both (6) and (33) in such a way that 

K M Tamizhmani and M Lakshmanan 

where @.“I is given by (47) and q‘p’ and 7‘:’ are LB symmetries of (6) and (33) 
respectively. 

Similar to the above verification of the strong symmetry condition we can evaluate 
each term of (19) by taking the Frechet derivatives of a‘’) along the direction of U, 
w and @v and @w ,and prove that (19) is satisfied and hence @ ( I )  is a hereditary 
symmetry as well for the first-order perturbation equation (33) in conjunction with 
(6). As discussed in 9: 2 this leads to the associated hierarchy of evolution equations 
(20) and (21) and the consequences thereof which we discuss below. 

4. Constants of motion for the first-order perturbation equation 

From the infinitely many LB symmetries obtained in 9: 3, we are able to generate the 
corresponding constants of motion. For this purpose we note from (32) that the strong 
symmetry @(‘I satisfies the relation 

is the 2 x 2 skew-symmetric diagonal matrix operator with the diagonal elements equal 
to the total derivative operator D and @(”+ is the adjoint of @(” as defined in (29). 
Since J is invertible, the adjoint operator can be written in the form 

( 5 5 )  @ ( l i +  =J- l@( l ’J .  

From (47) and (55) we find that 

@ ( I ) +  = [ 2D;y: U D+$D-’u:” (56) 

Then the infinitely many conserved covariants can be obtained from the relation (30), 
which now reads 

2 0  2 + $ - 1 ‘@’D + $D - 1 ;o) 1 . 0 -1 IO) U D + @ - ’ U \ ~ ’  

(57) 

Explicitly, we find the conserved covariants of (6) and (33) as 

y;O’ = 2 u y  +(u (o ’ )2 ,  (58a, b )  

etc, (58c 1 
(59a, b 1 

( 5 9 c )  

Further, using (23) (for 0 s s, j s 1) in the case of the first-order perturbation equation 
(in conjunction with (6)), we can derive the following constants of motion of (6) and 

( 0 )  (0 )  
Y 1  = U  9 

y \ O )  = 4ui@1 + ~ u ( O l u ~ )  + y(u\o) 12 + F ( u ( 0 ) ) 3 ,  

Y 1  = U  9 

( 0 )  (1) y:” = 2u:” +2u  U , 

y : 1 J = 4 u ~ * ’ + ~ u ‘ 1 J u : o ’ + ~ u  U 2  - T u 1  U 1  3 ( u  ) U , 

I t1  (11 

etc. 20  ( 0 )  11) 20 ( 0 )  (1) +‘o I O !  2 (11 
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(33)  from the sets (58)  and (59) :  

CD 

= [4u;o) + ~ , ( o ) , ~ )  + ~ ~ u ~ ~ ~ ) 2 + ~ ~ u ( o ) ~ 3 ~ u ( l ~  dx 3 etc, 

(61C) 

which are exactly the same as those obtained by Case and Roos (1981). We can also 
easily see that the constants in (60)  and (61)  are in involution such that 

[I f0 ' ,  I ( ; ' ]  = 0,  (62a)  

[I;" ,  I y ]  = 0, I ,  i'= 1 , 2 , 3 , .  . * , C O ,  (626) 

I, I ! =  1 , 2 , 3 , ,  . . ,00,  

with respect to the Poisson bracket 

where J is as given in (54). Thus we have an infinite number of LB symmetries and 
commuting constants of motion for the first-order perturbation equation as well and 
therefore it is completely integrable. 

5. The general case 

Now it is also possible to find an infinite number of LB symmetries and constants of 
motion straightaway for all orders of perturbed evolution equations (3) .  The definitions 
(7)-(32) defined in 8 2 will hold good here also. 

We note that as a generalisation of the strong symmetry @") in (47)  we have an 
( n  + 1 )  x (n + 1) matrix operator-valued function dn) such that it generates further 
symmetries from the known one satisfying the relation 

@(n 
7711-1 = 7 7 1 ,  l = l , 2 , 3  ) . . . )  00, 
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As before the conserved covariants can be obtained from the relation 

Yf+1 = l = l , 2 , 3  ) . . . )  03, 

Y d U  ) = hi0) ( U  1, Y i" (U ), * . . , rl"' ( U  ) I ,  

J@'"'+ = @'"'J, 

and @(")+ can be obtained from the relation 

where the (n  + 1) x (n  + 1) matrix 

The corresponding constants of motion are given by the relation grad I = y (see (23)). 
Thus we have shown that it is possible to derive an infinite number of LB symmetries 
and constants of motion for any order of perturbation as well. A detailed exposition 
and application of this theory to many other interesting soliton equations will be 
presented elsewhere. 
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